Skip to main content

Exploring Kingdom Protista: Characteristics, Classification, and Diversity of Eukaryotic Organisms with Unique Cellular Structures and Functions


1. KINGDOM PROTISTA

All single-celled eukaryotes are placed under Protista, but the boundaries of this kingdom are not well defined. What may be ‘a photosynthetic protistan’ to one biologist may be ‘a plant’ to another. In this book we include Chrysophytes, Dinoflagellates, Euglenoids, Slime moulds and Protozoans under Protista. Members of Protista are primarily aquatic. This kingdom forms a link with the others dealing with plants, animals and fungi. Being eukaryotes, the protistan cell body contains a well defined nucleus and other membrane-bound organelles. Some have flagella or cilia. Protists reproduce asexually and sexually by a process involving cell fusion and zygote formation.


1.1 Chrysophytes




This group includes diatoms and golden algae (desmids). They are found in fresh water as well as in marine environments. They are microscopic and float passively in water currents (plankton). Most of them are photosynthetic. In diatoms the cell walls form two thin overlapping shells, which fit together as in a soap box. The walls are embedded with silica and thus the walls are indestructible. Thus, diatoms have left behind large amount of cell wall deposits in their habitat; this accumulation over billions of years is referred to as ‘diatomaceous earth’. Being gritty this soil is used in polishing, filtration of oils and syrups. Diatoms are the chief ‘producers’ in the oceans.


1.2 Dinoflagellates




These organisms are mostly marine and photosynthetic. They appear yellow, green, brown, blue or red depending on the main pigments present in their cells. The cell wall has stiff cellulose plates on the outer surface. Most of them have two flagella; one lies longitudinally and the other transversely in a furrow between the wall plates. Very often, red dinoflagellates (Example: Gonyaulax) undergo such rapid multiplication that they make the sea appear red (red tides). Toxins released by such large numbers may even kill other marine animals such as fishes.


1.3 Euglenoids 




Majority of them are fresh water organisms found in stagnant water. Instead of a cell wall, they have a protein rich layer called pellicle which makes their body flexible. They have two flagella, a short and a long one. Though they are photosynthetic in the presence of sunlight, when deprived of sunlight they behave like heterotrophs by predating on other smaller organisms. Interestingly, the pigments of euglenoids are identical to those present in higher plants. Example: Euglena 


1.4 Slime Moulds




Slime moulds are saprophytic protists. The body moves along decaying twigs and leaves engulfing organic material. Under suitable conditions, they form an aggregation called plasmodium which may grow and spread over several feet. During unfavourable conditions, the plasmodium differentiates and forms fruiting bodies bearing spores at their tips. The spores possess true walls. They are extremely resistant and survive for many years, even under adverse conditions. The spores are dispersed by air currents.


 1.5 Protozoans




All protozoans are heterotrophs and live as predators or parasites. They are believed to be primitive relatives of animals. There are four major groups of protozoans. Amoeboid protozoans: These organisms live in fresh water, sea water or moist soil. They move and capture their prey by forming temporary finger-like projections called pseudopodia.

Their prey by putting out pseudopodia (false feet) as in Amoeba. Marine forms have silica shells on their surface. Some of them such as Entamoeba are parasites. Flagellated protozoans: The members of this group are either free-living or parasitic. They have flagella. The parasitic forms cause diseases such as sleeping sickness. Example: Trypanosoma. Ciliated protozoans: These are aquatic, actively moving organisms because of the presence of thousands of cilia. They have a cavity (gullet) that opens to the outside of the cell surface. The coordinated movement of rows of cilia causes the water laden with food to be steered into the gullet. Example: Paramoecium, Sporozoans: This includes diverse organisms that have an infectious spore-like stage in their life cycle. The most notorious is Plasmodium (malarial parasite) which causes malaria, a disease which has a staggering effect on human population.


"This Content Sponsored by Buymote Shopping app

BuyMote E-Shopping Application is One of the Online Shopping App

Now Available on Play Store & App Store (Buymote E-Shopping)

Click Below Link and Install Application: https://buymote.shop/links/0f5993744a9213079a6b53e8

Sponsor Content: #buymote #buymoteeshopping #buymoteonline #buymoteshopping #buymoteapplication"

Comments

Popular posts from this blog

Understanding Amphibolic Pathways: Key to Energy Homeostasis and Cellular Metabolism in Health and Disease with Insights and Implications

 Amphibolic Pathway An amphibolic pathway is a metabolic pathway that plays a crucial role in energy production and utilization within cells. These pathways are unique in that they involve both catabolic and anabolic processes, allowing cells to efficiently manage energy resources. Key Characteristics 1. *Dual function*: Amphibolic pathways can be involved in both energy production (catabolism) and energy utilization (anabolism). This dual function allows cells to adapt to changing energy demands. 2. *Shared intermediates*: These pathways often share common intermediates between catabolic and anabolic processes. This sharing of intermediates enables cells to efficiently utilize energy resources. 3. *Regulation*: Amphibolic pathways are tightly regulated to ensure that energy production and utilization are balanced. This regulation is critical for maintaining energy homeostasis within cells. Examples 1. *Citric acid cycle (Krebs cycle)*: This pathway is a key example of an amphiboli...